

U^SPC Université Sorbonne Paris Cité

Effects of brake wear nanoparticles on respiratory cells

<u>Chloé PUISNEY</u>, Evdokia OIKONOMOU, Sophie NOWAK, Alexandre CHEVILLOT, Jean-François BERRET and Armelle BAEZA-SQUIBAN

5th International NanoSafe Conference, Grenoble, 9th November 2016

Non-exhaust

General considerations (1)

Exhaust

Average urban PM10 emissions by passenger cars

(Hooftman et al, Energies, 2016)

- Brake wear contribution (Grigoratos et al, Environmental Science Pollution Research, 2015) :
 - up to 55 % by mass to total non-exhaust traffic-related PM₁₀
 - up to 21 % by mass to total traffic-related PM₁₀ emissions

General considerations (2)

What is already known about brake wear particles ?

- Braking scenario associated with temperature \uparrow + friction strength \rightarrow Surface chemistry alteration
 - →Material degradation
 - \rightarrow Favorable to particles generation
- Wide range of size : from few nanometers to several micrometers

(Thorpe and Harrisson, Science of Total Environment, 2008)

- \rightarrow Direct link between particles size and braking scenario
- Due to brake linings composition :
 - \rightarrow Known as non-exhaust linked pollution sources
 - →Important source of environmental metal contamination

Physicochemical characterization (1)

X-ray Fluorescence				
Chemical	Composition			
element	(%)			
Mg	1,6			
Al	11,0			
Si	13,1			
S	6,9			
K	2,1			
Ca	3,5			
Ti	1,3			
Cr	1,8			
Mn	0,2			
Fe	29,1			
Cu	16,7			
Zn	7,7			
Zr	1,0			
Sn	1,1			
Bi	1,6			

Physicochemical characterization (1)

X-ray Fluorescence				
Chemical	Composition			
element	(%)			
Mg	1,6			
Al	11,0			
Si	13,1			
S	6,9			
K	2,1			
Са	3,5			
Ti	1,3			
Cr	1,8			
Mn	0,2			
Fe	29,1			
Cu	16,7			
Zn	7,7			
Zr	1,0			
Sn	1,1			
Bi	1,6			

Physicochemical characterization (1)

X-ray Fluorescence		Thermogravimetric		
	Chemical	Compositic	on	didiysis
	element	(%)		Temperature (°C) 0 200 400 600 800 1000
	Mg	1,6		
	Al	11,0		
	Si	13,1		sem ⊲
	S	6,9		-6-
	K	2,1		L ₈₋
	Са	3,5		
	Ti	1,3		
	Cr	1,8		
	Mn	0,2		
	Fe	29,1		. ↓
	Cu	16,7		Organic : 6%
	Zn	7,7		
	Zr	1,0		
	Sn	1,1		94%
	Bi	1,6		

Scanning Electron Microscopy

Physicochemical characterization (2)

Optical microscopy

 $0 \rightarrow 10 \text{ min}$

Sonication + Filtration process

0,45 μm filter

Physicochemical characterization (4)

Transmission electron microscopy coupled with energy dispersive X-ray spectroscopy of filtered suspensions

Toxicological study (1)

24h exposure to :

Brake wear powder suspensions

Benchmark = Fe_2O_3 nanoparticles (50 nm)

- → **Barrier Integrity study** : Lucifer Yellow permeability assay, Transepithelial electric resistance measurement (TEER)
- → **Cellular morphology** : Immunostaining (Actin, ZO-1, MUC5AC)
- → **Proinflammatory response** : ELISA (IL-6, IL-8, TNF)

Toxicological study (2)

Epithelial barrier integrity assessment following 24h exposure to particles

Statistical analysis : ANOVA – Dunnett's post test, compared to vehicle, P<0,05 : *, P < 0,01 : **, P<0,001 : ***, P<0,0001 : ****

Toxicological study (2)

Epithelial barrier integrity assessment following 24h exposure to particles

Statistical analysis : ANOVA – Dunnett's post test, compared to vehicle, P<0,05 : *, P < 0,01 : **, P<0,001 : ***, P<0,0001 : ****

Toxicological study (3)

Actin

ZO-1

MUC5AC

Vehicle

Brake wear powder (1 μg/cm²)

Brake wear powder (10 μg/cm²)

 Fe_2O_3 nanoparticles (1 µg/cm²)

Conclusions

Physico-chemical characterization

 \rightarrow Complex mixture

- \rightarrow Major components : Fe, Cu
- \rightarrow Micro- and Nano-sized fractions
- \rightarrow Different amorphous particles

Conclusions

Physico-chemical characterization

- \rightarrow Complex mixture
- \rightarrow Major components : Fe, Cu
- \rightarrow Micro- and Nano-sized fractions
- \rightarrow Different amorphous particles

Toxicological study

- \rightarrow Permeability \uparrow = Barrier functions \searrow
- = tight junctions injury
- → No pro-inflammatory response (data not shown)
- \rightarrow Mucus production \uparrow
- → Response similar as benchmark particles

Pro-inflammatory response

Size distribution following sonication and filtration process

Stability study

